
Simple and E�cient Polygonization

of Implicit Surfaces

Luiz Velho

IMPA { Instituto de Matem�atica Pura e Aplicada

Estrada Dona Castorina, 110, Rio de Janeiro, Brazil, 22460

his paper describes a simple and e�cient poly-

gonization algorithm that gives a practical way to

construct adapted piecewise linear representations of

implicit surfaces. The method starts with a coarse

uniform polygonal approximation of the surface and

subdivides each polygon recursively according to lo-

cal curvature. In that way, the inherent complexity of

the problem is tamed by separating structuring from

sampling and reducing part of the full three dimen-

sional search to two dimensions.

1 Introduction

Implicit models constitute a powerful mathematical

description of the geometry of three dimensional ob-

jects [13]. Under this framework, a surface is de-

�ned as the set of points which satisfy the equation

f(x; y; z) = 0. Simple primitive implicit shapes can

be speci�ed by algebraic functions, such as quadrics,

[6]. More complex implicit shapes can be speci�ed by

combining primitives using point set or blend oper-

ations that are the basis of, respectively, CSG, [18],

and Blobby models, [5].

The implicit description is particularly e�ective to

model smooth intricate shapes. For this reason, it

has been extensively used in various areas of appli-

cation. For example: in science for the visualization

of molecules [16]; in engineering for the design of in-

dustrial products, [19]; and in entertainment for the

creation of animated characters, [4].

In order to do computations with implicitly de-

�ned objects a graphics system must process the im-

plicit representation either in symbolic or numeric

form. The system must incorporate computational

methods implementing various classes of operations

with these objects. Typical examples are visualiza-

tion operations, such as ray tracing, [20], and analy-

sis operations, such as interference detection [9]. Al-

though there are algorithms that perform such op-

erations directly on the implicit form, sometimes, a

conversion to another representation is necessary.

An important case of conversion between geomet-

ric descriptions is the polygonization of implicit sur-

faces. This operation transforms from implicit to

parametric form. It produces a polygonal mesh which

gives a piecewise linear approximation of the surface.

Polyhedral surfaces are used in many graphical ap-

plications because of their simplicity. In particular,

most interactive workstations have polygon rendering

engines that enable them to display these surfaces in

real time.

2 Uniform Polygonization

Polygonization methods incorporate two basic oper-

ations: sampling and structuring [12]. Sampling gen-

erates a set of points on the implicit surface. Struc-

turing links those points to construct a mesh. The

�rst operation deals with geometry, while the second

operation deals with topology. Algorithms can be

classi�ed according to how they implement these two

operations.

The simplest polygonization algorithms are based

on uniform decompositions of the ambient space.

They employ a cell complex made of, either cubi-

cal, or tetrahedral elements of the same size. (See

respectively [23] and [1]). The implicit function is

evaluated at node points of the grid underlying the

1

uniform spatial decomposition, and the samples ob-

tained are assembled using adjacency relations from

the cell complex. Algorithms of this type are straight-

forward to implement, but produce polygonal meshes

that are not adapted to the implicit surface. Such a

solution is only acceptable for shapes with regular

features, where the surface curvature is almost con-

stant.

In general, uniform decomposition results in poly-

gonizations that give poor approximations of the im-

plicit surface. The �xed sampling rate causes over-

sampling of areas with low curvature and undersam-

pling of areas with high curvature. For a given level

of accuracy, the algorithm has to sample everywhere

with a rate that is high enough to capture the small-

est shape feature. This often creates a representation

which has too many polygons, and that may be im-

practical because of memory limitations.

3 Adaptive Polygonization

The best solution is to construct an adapted polygo-

nization. This method employs a sampling rate that

varies spatially according to local surface complex-

ity. Consequently, it produces the minimum number

of polygons required to approximate the surface with

the desired precision.

Adaptive polygonization algorithms are more

complex than uniform algorithms, because they must

solve two interdependent problems:

� ensure optimal sampling;

� enforce correct topology.

Optimal sampling guarantees a faithful geometric

approximation, and depends on the adaptation crite-

ria. Correct topology guarantees the consistency of

the polygonal mesh and depends on the structuring

mechanism.

The main di�culty is that when changes are made

locally to the sampling rate, the mesh topology may

be a�ected globally. Therefore, it is necessary to de-

vise a mechanism that synchronizes the solution of

these two problems. If that is not done correctly, the

polygonization may exhibit holes caused by wrong

connectivity. For example, di�erent levels of subdivi-

sion in two adjacent cells could create a crack along

the boundary between them.

4 Previous Work

Previous adaptive polygonization algorithms are

based on the re�nement of some three dimensional

cell complex. They recursively subdivide space until

the adaptation criteria is met and, at that stage, poly-

gons are generated for cells intersecting the implicit

surface. Synchronization is achieved either through a

hierarchical spatial data structure or exploiting edge

coherence. The �rst approach uses a restricted tree.

It maintains the subdivision structure balanced with

repeated re�nement steps that modi�es only one cell

at each pass. Whenever a cell is divided its neighbors

are constrained to be at levels immediately above or

below [7], [14]. The second approach subdivide cells

independently constraining polygon edges according

to the adaptation criteria. In that way, it is able to

make consistent decisions when it splits neighbor cells

sharing an edge [22].

All the algorithms described above employ a full

3D adaptive partition of space, and perform sampling

a structuring in one single step. Strictly speaking,

this three dimensional search is necessary for com-

puting a correct solution in the case of surfaces with

arbitrary topology. Unfortunately, such a require-

ment places an enormous burden in actual implemen-

tations, both in terms of algorithm complexity and

performance. This is mainly due to the 3D combina-

torics of the problem, as well as, the need of space

and time resources.

The situation above has motivated the quest for al-

ternative adaptive polygonization methods that avoid

the problem intractability at the expense of comput-

ing sub-optimal solutions. One attempt is this direc-

tion consists in �rst generating a �ne uniform poly-

gonization that is subsequently simpli�ed by merging

clusters of co-planar polygons, [21]. This two-step

procedure reduces the algorithm complexity, but de-

mands large memory resources and computing time.

5 A Simpler Adaptation Method

In this paper we present an adaptive polygonization

method that overcomes the di�culties described in

the previous section. The algorithm is easy to imple-

ment and it is very e�cient both in space and time.

For this reason, it provides a practical solution for

2

real-world applications.

The method consists of two steps:

1. initial polygonization;

2. adaptive re�nement.

The initial polygonization is created from an uni-

form space decomposition. The output of this process

is a triangle mesh that serves as the basis for adap-

tive re�nement. During adaptation, the elements of

the mesh are recursively subdivided according to lo-

cal curvature of the implicit surface.

The curvature is estimated over each element of

the mesh using the deviation of the surface normal

from the normal of the element's support plane.

The key to simple adaptation is the separation be-

tween structuring and sampling. Structuring is done

in the �rst step, where a coarse sampling is also per-

formed. In the second step, new samples are gener-

ated and projected onto the surface using the gra-

dient of the implicit function. The structure of the

initial mesh guides the adaptive sampling and, at the

same time, provides the connectivity information for

maintaining geometrical consistency.

The link between structuring and sampling is

based on edge coherence. Whenever the local sur-

face curvature exceeds some prede�ned threshold a

triangle is subdivided by splitting its edges at their

midpoints. But a midpoint is projected onto the sur-

face only when the curvature along the edge is greater

than the threshold. This guarantees that a consistent

decision is made for two polygons sharing an edge.

Note that the �rst step takes place in a three di-

mensional space (i.e. in the region delimited by the

bounding box of the implicit object), while the second

step is restricted to a two dimensional space (i.e. the

polygonal mesh approximating the implicit surface).

This reduction in the dimensionality of the problem

makes the computation very e�cient.

The performance gains are even more signi�cant

because the �rst step, which is more costly, needs to

be executed only once { at a �xed, coarse resolution {

while the second step, which is a fast operation, needs

to be executed repeatedly until the desired accuracy

of the solution is achieved.

6 Computing the Initial Mesh

In this section we describe the �rst step of the algo-

rithm { the computation of the initial mesh. This

process corresponds to an uniform polygonization of

the implicit surface which is a well understood prob-

lem and has various alternative solutions available in

the graphics literature [15], [24], [2]. We describe

here a polygonization algorithm based on a simpli-

cial space decomposition [13]. This is an elegant so-

lution for the problem and it is a perfect match for

our mesh adaptation method because of its simplicity

and conciseness. The implementation of another uni-

form polygonization algorithm is described in Graph-

ics Gems IV [8].

Throughout this text, we use a \C-like" pseudo-

code notation that is very close to the actual source

code of the program.

We de�ne the data structure Vector, with the

usual operators of dot product, addition and scalar

product:

typedef struct Vector

Real x, y, z;

v_dotprod : w = a � b =< a;b >

v_add : w = a+ b

v_scale : w = s � a

We also de�ne the data structure Vertex, which

is the basic unity of information in the program. It is

used to represent a node of the 3D cell complex asso-

ciated with the uniform space decomposition, as well

as, a node of the triangle mesh approximating the im-

plicit surface. This structure contains all knowledge

about the implicit object that is required at the node.

typedef struct Vertex

Vector p; /* position of the node */

Vector n; /* normal direction at p */

Real d; /* density value of F(p) */

The normal vector to the level surfaces of f is given

by the gradient �eld rf =
�
@f

@x
; @f
@y
; @f
@z

�
.

The interface with the implicit model is made

through the functions: f_value, that returns the

value of f , and f_grad, that returns the gradient of

3

f .

The uniform polygonization algorithm decom-

poses the bounding box of the implicit shape using a

simplicial cell complex. It then identi�es the set of

cells that are intersected by the implicit surface and

for each of these cells, it generates an element of the

polygonal mesh approximating the surface.

Our simplicial decomposition uses the classical

Coxeter-Freudenthal space subdivision scheme [10],

that is de�ned as follows (see Figure 1).

p0

p7

p1

p3p2

p4
p5

p6

Figure 1: Coxeter-Freudenthal decomposition of the

cube in R3

The construction starts with a rectangular space

partition of cubical cells. For a cube in R3 with

vertices p0; : : : ; p7, it takes the diagonal p0p7 and

projects it onto each face of the cube. This gives

a triangulation of the faces of the cube. The 3D sim-

plicial cells are constructed by adding to each triangle

in a face, the vertex of the diagonal p0p7 that does

not belong to it. We obtain in this way 6 simplices

of dimension 3.

�0 = (p0; p1; p3; p7)

�1 = (p0; p1; p5; p7)

�2 = (p0; p2; p3; p7)

�3 = (p0; p2; p6; p7)

�4 = (p0; p4; p5; p7)

�5 = (p0; p4; p6; p7)

The implicit surface de�ned by f(x; y; z) = 0 in-

tersects a cell only if the value of implicit function

f changes from positive to negative within the cell.

When the resolution of the space decomposition is

adequate, this fact can be determined from the val-

ues of f at the vertices of the cell, as indicated in

Figure 2 for the 2D case.

f > 0

f = 0

f < 0

-

+

+

+

Figure 2: Intersection of a 2D cell with an implicit

curve

The top layer of the program is the procedure

bbox_scan, shown below. It performs a rectangu-

lar subdivision of the implicit object's bounding box

and scans all cubical cells testing the sign of the im-

plicit function in order to identify possible intersec-

tions with the implicit surface. When a potential hit

occurs, the Coxeter-Freudenthal decomposition of the

cube is generated and each of its simplices are pro-

cessed.

The current cube of the subdivision is represented

by the array, Vertex v[8], that stores the vertices

of the cube.

4

bbox_scan(ll, ur, inc)

{

for (x=ll.x; x<ur.x; x+=inc)

for (y=ll.y; y<ur.y; y+=inc)

for (z=ll.z; z<ur.z; z+=inc) {

for (hit=FALSE, k=0; k<8; k++) {

v[k].p.x = (k&01) ? x : x+inc;

v[k].p.y = (k&02) ? y : y+inc;

v[k].p.z = (k&04) ? z : z+inc;

v[k].d = f_value(v[k].p);

v[k].n = f_grad(v[k].p);

if (k == 0)

side = sign(v[k].d);

else if (side != sign(v[k].d))

hit = TRUE;

}

if (hit == TRUE) {

simplex(v[0],v[1],v[3],v[7]);

simplex(v[0],v[5],v[1],v[7]);

simplex(v[0],v[3],v[2],v[7]);

simplex(v[0],v[2],v[6],v[7]);

simplex(v[0],v[4],v[5],v[7]);

simplex(v[0],v[6],v[4],v[7]);

}

}

}

The procedure simplex determines, based on the

sign of f , if there is an actual intersection with the

cell, and if so, how it is pierced by the implicit sur-

face. Note that, when the parent cube is intersected

by the surface only some cells of the simplicial de-

composition will be crossed by it.

The implicit surface may intersect the edges of a

simplex in either three or four points. This results in

two basic con�gurations: in the �rst case, a triangle

is generated, and in the second case a quadrilateral

is generated (see Figure 3).

Figure 3: Intersection of the surface with a 3-simplex

simplex(v0, v1, v2, v3)

{

if (v0.d < 0)

if (v1.d < 0)

if (v2.d < 0)

if (v3.d < 0) ; /* no int. */

else tri(v3,v2,v1,v0);

else

if (v3.d < 0) tri(v2,v0,v1,v3);

else quad(v2,v3,v0,v1);

else

if (v2.d < 0)

if (v3.d < 0) tri(v1,v3,v2,v0);

else quad(v1,v3,v2,v0);

else

if (v3.d < 0) quad(v1,v2,v0,v3);

else tri(v0,v3,v2,v1);

else

if (v1.d < 0)

if (v2.d < 0)

if (v3.d < 0) tri(v0,v1,v2,v3);

else quad(v0,v3,v1,v2);

else

if (v3.d < 0) quad(v0,v2,v3,v1);

else tri(v1,v3,v0,v2);

else

if (v2.d < 0)

if (v3.d < 0) quad(v0,v1,v2,v3);

else tri(v2,v3,v1,v0);

else

if (v3.d < 0) tri(v3,v0,v1,v2);

else ; /* no int. */

}

5

The procedures tri and quad compute the inter-

section points of the surface with simplex edges, and

produce the elements of the triangular mesh that are

used as the starting point for the adaptation process.

They call tri_adapt to iniciate the second phase of

the program.

tri(v0 ,v1, v2, v3)

{

i0 = intersect(v0, v1);

i1 = intersect(v0, v2);

i2 = intersect(v0, v3);

tri_adapt(i0, i1, i2);

}

The procedure quad splits the quadrilateral in two

triangles.

quad(v0, v1, v2, v3)

{

i0 = intersect(v0, v2);

i1 = intersect(v0, v3);

i2 = intersect(v1, v3);

i3 = intersect(v1, v2);

tri_adapt(i0, i1, i2);

tri_adapt(i0, i2, i3);

}

The intersection of an edge v0v1 with the implicit

surface is found using a continuation method. The

procedure intersect computes the initial guess, p,

from a linear approximation of the implicit func-

tion. The point p is projected onto the surface by

project_s that will be described in the next section.

Vertex intersect(v0, v1)

{

t = v0.d/(v0.d - v1.d);

p=v_add(v_scale(v0.p,1-t),v_scale(v1.p,t));

v.p = project_s(1, p, f_value(p));

}

7 Adaptive Mesh Re�nement Algorithm

The mesh re�nement algorithm recursively subdi-

vides triangular cells according to the adaptation cri-

teria. It processes each triangle independently, en-

forcing geometric consistency through edge coher-

ence.

A triangle, with vertices v0; v1; v2, is subdivided

into four triangles by splitting its edges, e1 = v0v1,

e2 = v1v2, and e3 = v2v0, at their midpoints | m1,

m2 and m3 | and connecting the midpoints of ad-

jacent edges. A diagram illustrating this scheme is

depicted in Figure 4.

V0

V1V2

m3 m1

m2

E1

E2

E3

Figure 4: Subdivision scheme of a triangle

The procedure tri_adapt implements the subdi-

vision scheme described above. The decision to sub-

divide the triangle is based on a classi�cation of the

surface curvature along its edges. If all edges are at,

then a piecewise linear approximation is good enough

and the program outputs that triangle. If one or more

edges are not at, then the surface is locally curved

and that triangle must be subdivided. In this case,

the edge midpoints are computed and the procedure

is called recursively for each piece.

6

tri_adapt(v0, v1, v2)

{

e1 = edge_code(v0, v1);

e2 = edge_code(v1, v2);

e3 = edge_code(v2, v0);

if (e1==FLAT && e2==FLAT && e3==FLAT){

tri_output(v0, v1, v2);

} else {

m1 = midpoint(e1, v0, v1);

m2 = midpoint(e2, v1, v2);

m3 = midpoint(e3, v2, v0);

tri_adapt(v0, m1, m3);

tri_adapt(v1, m2, m1);

tri_adapt(v2, m3, m2);

tri_adapt(m1, m2, m3);

}

}

The surface curvature along an edge is measured

by the angle � between the surface normals, n0 and

n1, at the edge endpoints. (See Figure 5.)

n0

n1

n1
n0

α

Figure 5: Adaptation Criteria

The procedure edge_code estimates the edge cur-

vature from the cosine of � (using the fact that

cos� = n0 � n1). If the angle is greater than a prede-

�ned constant, the edge is classi�ed as not at.

Int edge_code(v0, v1)

{

return (v_dotprod(v0.n, v1.n) < dot_tol) ?

FLAT : NOT_FLAT;

}

The desired level of accuracy of the polygonal

approximation is indicated by the global constant

dot_tol and can be set when the program gets ex-

ecuted. In terms of interface, it is better to let the

user de�ne a threshold on the angle �. This is a more

intuitive quantity because it gives the maximum de-

viation of surface normals along an edge.

The procedure midpoint returns the midpoint of

an edge. In spite of its simplicity, it implements the

most important part of the adaptation process | the

edge coherence mechanism. Notice that after com-

puting the true midpoint m of the linear segment v0v1,

it projects m onto the surface only if the edge is not

at. This guarantees that when the edge is at a hole

in the polygonization will not occur, even if one of the

triangles sharing the edge is subdivided and the other

not.

Vertex midpoint(e, v0, v1)

{

m.p = v_scale(0.5, v_add(v0.p, v1.p));

if (e == NOT_FLAT)

m.p = project_s(1, m.p, f_value(m.p));

return m;

}

If the edge is curved, we need to �nd a sample

point on the surface to perform the subdivision. It

should be the closest point on the implicit surface to

the midpoint pm of the segment v0v1. This amounts

to the compute the point p0 such that f(p0) = c and,

at the same time, minimizes jjp0�pmjj. The solution

of such an optimization problem can be calculated

using various numerical techniques, such as gradient

descent. Here we employ a physics based method that

is simple to implement and provides good accuracy

control.

The physics based method projects the midpoint

pm onto the surface using the implicit function f .

Under this paradigm, we interpret the modulus of

f as a potential function and the gradient of jf j is

used to generate a force �eld that drives particles to

the implicit surface [11]. This results in the following

equation of motion for a unit mass particle

dx

dt
+ sign(f)rf = 0

The above di�erential equation is solved iter-

atively using an explicit Euler time integration

7

method. The procedure project_s implements one

time iteration of the solution. It computes the posi-

tion of a particle p at the next time-step t+�t from

its position at the current time t

pt+�t = pt +�t sign(f(pt)) rf(pt)

The iteration process is repeated until the particle

is close enough to the surface (i.e. jf(pt)j < �).

If the time step is too big, it is possible that the nu-

merical simulation causes an overshoot. This would

make the particle to oscillate forever from one side of

the surface to the other. In order to prevent such a

problem, the time step is reduced by 1=2 every time

that the particle crosses the surface.

The constant � controls the accuracy of the solu-

tion of the optimization problem above. It determines

the �nal distance of p0 to the implicit surface, and is

related to the variation of the implicit function f near

p0.

Vector project_s(step, p, v)

{

p=v_add(p,v_scale(f_grad(p),sign(v)*step))

if (abs(v1 = f_value(p)) < epsilon)

return p;

if ((v * v1) < 0)

step /= 2;

return project_s(step, p, v1);

}

Figure 6 shows schematically how an edge mid-

point is converted to a particle and driven onto the

surface by simulating the system dynamics.

8 Results

In this section we discuss the results of using our

method for the adaptive polygonization of implicit

surfaces.

The �rst example is a blobby object, [5]. This

type of model de�nes the implicit function as a den-

sity �eld generated from a point skeleton. The im-

plicit surface is one level set of that �eld. In such a

formulation, point sources can be combined either ad-

ditively or subtractively in order to produce smooth

blends.

p

| ∇ f |

Figure 6: Projecting a new sample onto the implicit

surface

We chose this implicit model because it allows

a fairly good control of the local surface curvature

through the blending parameters.

The test object is a spherical shape with a cavity

on top. It was constructed using a skeleton with two

points consisting of one strong positive source and

one weaker negative source.

Figure 7 shows a sequence of polygonal approx-

imations of this object. Figures 7(a), (b) and (c)

depict a coarse, medium and high resolution versions

of the model. They were generated with dot_tol set,

respectively, to 0.2, 0.4 and 0.8. The corresponding

polygonal meshes are composed of 298, 836 and 2351

triangles.

Note that the density of the mesh increases

mostly around the rim of the crater, where the sub-

tracted material blend occurs. This area contains the

sharpest variations in surface curvature.

Figure 8 shows a close up view of a portion of the

triangle mesh with high polygon density.

The second example is a hypertexture object [17].

This type of model is a procedural implicit shape,

de�ned by functional composition of a base density

function with density modulation functions. In the

example we have a \noisy sphere" of radius 1, gen-

erated from a spherical �eld modulated bandlimited

noise.

Figure 9 shows the polygonal approximation pro-

duced by our algorithm using the following parame-

ters: tolerance of 0:96 (� < 15 degrees); and accuracy

threshold � = 10�5. The initial sampling employed a

8

(a)

(b)

(c)

Figure 7: Sequence of polygonal approximations

[3� 3� 3] grid enclosing the object. Figure 10 shows

a Gouraud shaded rendering of the object. The mesh

has 1058 triangles and was computed in 0.9 seconds

in a SGI Indigo R4000 workstation.

Figure 8: Detail of an area with high surface curva-

ture

Figure 9: Polygonal approximation of the \Noisy

Sphere".

9 Drawbacks and Limitations

In this section we discuss briey a few limitations of

the method, and provide some guidelines for its use

in practical applications.

This new hybrid 3D/2D adaptation method has

one limitation compared with methods that employ

9

Figure 10: \Noisy Sphere", Gouraud Shaded

full a 3D scheme. If the initial sampling is too coarse

in relation to the level of detail of the implicit shape,

the polygonization may not capture the correct topol-

ogy of the surface. This is because structuring is done

in 3D during the �rst pass. At that stage, the method

commits to a topology and proceeds on to the second

pass, which works in 2D and changes just the geom-

etry. However, this is not a serious problem because

there is usually enough information about the surface

to determine the appropriate sampling rate.

To ensure a correct solution, the resolution of the

sampling grid must be �ne enough to discriminate

the topology of each component of the object. In

practice, a very coarse sampling grid su�ces for most

shapes of interest.

For example, in the case of compact surfaces of

genus 0 (i.e. a shape that is homeomorphic to the

sphere), the grid size must be smaller than the radius

of the largest sphere inscribed in the shape. This is

illustrated for the 2D case in Figure 11. Note that the

adaptation process will track down every geometric

feature of the connected component, independently

of the initial sampling grid.

Similarly, in the case of a genus 2 surface (i.e. a

torus), the grid size must be smaller than the radius

of the hole.

If the object is animating and there is a change in

Figure 11: Resolution of the sampling grid

its topology, the new topology will be captured by the

algorithm only when the separation of surface pieces

is greater than the resolution of the sampling grid.

Nonetheless, even if the topology is not correct, the

method always produces a consistent mesh, without

cracks or any other artifacts.

10 Conclusions

The adaptive polygonization algorithm presented in

this paper is a simpli�cation of the method intro-

duced by the author in [22]. The main di�erence is

that the original method employs a full 3D adapta-

tion, making the implementation more complex and

less e�cient. In the new method we decompose the

problem in two subproblems, such that most of the

computation can be done in 2D. This makes the im-

plementation simpler and more e�cient.

A similar method was developed independently by

Thad Beier of Paci�c Data Images { PDI, [3].

This adaptation approach was incorporated by

the author into Globograph's 3D modeling system in

1989. Since then, it has been used in many successful

animation projects.

10

References

[1] E. L. Allgower and S. Gnutzmann. An algorithm

for piecewise linear approximation of implicitly

de�ned two-dimensional surfaces. SIAM Journal

of Numerical Analysis, 24(2):2452{2469, April

1987.

[2] E. L. Allgower and P. H. Schmidt. An algorithm

for piecewise linear approximation of an implic-

itly de�ned manifold. SIAM Journal of Numer-

ical Analysis, 22:322{346, 1985.

[3] T. Beier, 1990. (personal communication).

[4] T. Beier. Practical uses for implicit surfaces in

animation. ACM Siggraph Course Notes, 1990.

Modeling and Animating with Implicit Surfaces.

[5] J. F. Blinn. A generalization of algebraic sur-

face drawing. ACM Transactions on Graphics,

1(3):235{256, 1982.

[6] James F. Blinn. The algebraic properties of

homogeneous second order surfaces. In SIG-

GRAPH '84 Mathematics of Computer Graphics

seminar notes. ACM, July 1984.

[7] J. Bloomenthal. Polygonization of implicit sur-

faces. Comp. Aid. Geom. Des., 5(4):341{355,

1988.

[8] J. Bloomenthal. Graphics Gems IV, volume 4,

chapter An Implicit Surface Polygonizer, pages

324{349. Academic Press, 1994.

[9] S. A. Cameron. Collision detection by four-

dimensional intersection testing. IEEE Trans.

Robotics and Automation, 6(3):291{302, 1990.

[10] H. Coxeter. Regular Polytopes. Macmillan, New

York, 1963.

[11] L. H. de Figueiredo, J. de M. Gomes, D. Ter-

zopoulos, and L. Velho. Physically-based meth-

ods for polygonization of implicit surfaces. In

Proceedings of Graphics Interface 92, 1992.

[12] L. H. de Figueiredo and J. Gomes. Computa-

tional morphology of curves. The Visual Com-

puter, 11:105{112, 1995.

[13] J. Gomes and L. Velho. Implicit Objects in Com-

puter Graphics. Monograph Series. IMPA, Rio

de Janeiro, 1993.

[14] M. Hall and J. Warren. Adaptive polygonization

of implicitly de�ned surfaces. IEEE Computer

Graphics and Applications, 10(6):33{43, 1990.

[15] W. E. Lorensen and H. E. Cline. Marching

cubes: A high resolution 3D surface construc-

tion algorithm. Computer Graphics, 21(4):163{

169, 1987.

[16] Arthur J. Olson and David S. Goodsell. A func-

tional view of proteins. IEEE Computer Graph-

ics and Applications, 11(1):15{17, January 1991.

[17] K. Perlin and E. Ho�ert. Hypertexture. Com-

puter Graphics, 23(3), 1989.

[18] A. Requicha. Representation for rigid solids:

Theory, methods, and systems. ACM Computing

Surveys, 12(4), 1980.

[19] A. P. Rockwood and J. Owen. Using implicit

surfaces to blend arbitrary solid models. In

G. Farin, editor, Geometric Modeling: Algo-

rithms and Trends. SIAM, 1987.

[20] S. Roth. Ray casting as a method for solid mod-

eling. Computer Graphics and Image Processing,

18(2):109{144, 1982.

[21] William J. Schroeder, Jonathan A. Zarge, and

William E. Lorensen. Decimation of triangle

meshes. Computer Graphics (SIGGRAPH '92

Proceedings), 26(2):65{70, July 1992.

[22] L. Velho. Adaptive polygonization of im-

plicit surfaces using simplicial decomposition

and boundary constraints. In Proceedings of Eu-

rographics 90. Elsevier Science Publisher, 1990.

[23] G. Wyvill, C. McPheeters, and B. Wyvill. Data

structure for soft objects. The Visual Computer,

2(4):227{234, 1986.

[24] G. Wyvill, C. McPheeters, and B. Wyvill. Data

structure for soft objects. The Visual Computer,

2(4):227{234, 1986.

11

